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This paper presents an extension built on a hexagonal grid of the wave automaton,
which was introduced in past few years for describing wave propagation in inhomo-
geneous media. This new method is capable of computing wave propagation in 2D
anisotropic media without the need for introducing interpolating schemes. After a
comparison of isotropic single scattering with analytical results using Mie theory, the
method is used to compute the field scattered by one anisotropic particle for various
orientations of its principal axes. Scattering by a collection of anisotropic particles
is also presented. c© 2000 Academic Press
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1. INTRODUCTION

The wave automaton is a numerical method that has been introduced to describe wave
propagation in random media [1, 2]. By using appropriate propagation and scattering rules
over a discrete lattice, it can be considered as a discrete implementation of Huygens’
principle [3]. In particular, it bears strong resemblance with the transmission line matrix
modeling (TLM) method, which is commonly used to solve the Maxwell equations in
electromagnetic structures [4]. However, it differs from the TLM method in two ways.
First, it propagates and scatters real or complex quantities over the network instead of
voltage pulses as in TLM. In the following development, we shall refer to these real or
complex quantities as currents. Note that it also differs from lattice gas automata that use
Boolean variables (see, for instance, the recent model for 3D electromagnetic propagation
introduced in [5]). Next, the construction of the wave automaton relies on the fundamental
symmetries of the current’s dynamics such as time reversal and reciprocity [6, 7]. Due
to this construction, the model is entirely determined by a network of unitary scattering
matrices. Hence, it also belongs to a large family of similar models used in different areas
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of physics: the lattice Boltzmann wave model [8, 9], quantum cellular automata [10, 11],
network models (NWM) [12, 13], etc.

The discrete wave equations resulting from the general construction described in [7] were
the Schr¨odinger, the Klein–Gordon, and the classical wave equations. In this paper, we will
focus on this last equation. While this equation allowed the simulation of wave propagation
in inhomogeneous media, it was, however, limited to isotropic media. This limitation is
also found in usual methods devoted to numerical simulation of wave equations such as
Maxwell equations. For instance, the finite-difference time-domain (FDTD) method needs
for anisotropic materials the introduction of additional interpolation schemes in order to
get field values which are not available from the FDTD grid [14]. Similarly, the problem
has been solved with the TLM method by introducing a new generalized TLM node [15].
Since the wave automaton can be identified with a finite-difference algorithm, one could
think of introducing interpolation schemes as in the FDTD method. However, this would
be in conflict with the spirit of the method, which is founded on an equivalent of Huygens’
principle. Propagating current between nodes cannot be associated with such interpolation
schemes. It turns out that two of the hypotheses made in the general construction of the
isotropic wave automaton must be modified in order to handle anisotropic media. The first
one seems natural and consists in abandoning the isotropy of the process that describes the
scattering of the currents at the nodes of the network. However, relaxing the isotropy of
the scattering process is not sufficient. It turns out that the principal axes of the resulting
anisotropic medium are bound to lie along the axes of the Cartesian grid, thus preventing the
model from describing an anisotropic material with principal axis along arbitrary directions.
This led us to use a hexagonal grid instead of a Cartesian grid. This task is simplified by the
fact that most of the results obtained in [7] are valid on any arbitrary lattice. Hence, one just
needs to adapt the main steps of the construction described in [7] to the hexagonal lattice.

The paper is organized as follows. In Section 2, we recall briefly the main steps of the
construction, which led to the general discrete wave equation described in [7]. This in-
cludes the definition of the currents and of the field, the propagation and scattering rules,
and their symmetries. We stress the importance of the special form of the scattering ma-
trices, which is needed to close the wave equation. This result enables us to eliminate the
currents from the equation that governs the field evolution and makes the wave automa-
ton equivalent to a finite-difference scheme. We conclude by showing that all hypotheses
made in [7] lead to modeling an isotropic medium. In Section 3, we abandon some of the
hypotheses introduced in Section 2. We deduce in particular the finite-difference version
of the wave equation on a hexagonal grid. We show that this equation is appropriate to
describe a two-dimensional anisotropic medium with arbitrarily oriented principal axes.
In Section 4, we consider an inhomogeneous medium. We focus on the special treatment
that is needed to describe the interface separating two different media. In Section 5, we
consider the far-field patterns of Mie scatterers to demonstrate the capability of the al-
gorithm. Excellent agreement is found between the wave automaton and exact results for
isotropic scatterers. Then, far-field patterns of anisotropic scatterers are presented for which
no analytical results are available. In conclusion, we discuss possible extensions of this
work.

2. THE WAVE AUTOMATON FOR AN ISOTROPIC MATERIAL

In this section, we recall the definitions, notations, and main steps of the construction of
a discrete scalar wave equation in an isotropic medium. The details can be found in [7].
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FIG. 1. (a) Propagation of currents along the bonds of a regular lattice. For convenience, a square lattice
has been represented. However, most of the results discussed in this section are valid for lattices with arbitrary
coordination numberz. (b) The bonds are labeledk= 1; : : : ; z+ 1 at each nodeEr . The neighbor node that is
linked to Er through bondk is calledEr k. As the bonds are labeled in the same manner at each node, note that bond
numberk at nodeEr is given a different number at nodeEr k. For notation convenience, we notēk this number.
Hence, bondsk at nodeEr andk̄ at nodeEr k designate the same bond. With this notation, the propagation step reads
Ek̄.Er k; t + ¿/= Sk.Er ; t/; k= 1; : : : ; z+ 1. Note also that fork= z+ 1; Er z+1≡ Er .

The currents are defined as real or complex numbers that propagate along the bonds of
a discrete lattice. The nodes of the lattice are labeled by the discrete vector positionsEr .
Although most of the results described in this section are valid over any arbitrary lattice, we
shall consider in the following a regular lattice (i.e., a Bravais lattice) with fixed coordination
numberz. Moreover since we are only interested in the classical scalar wave equation and
not, for instance in the Schr¨odinger equation, it will be sufficient to consider real currents.
At each timet; z outgoing currentsSk.Er ; t/; k= 1; : : : ; z leave each lattice nodeEr and
propagate in one discrete time step¿ to thezneighbor nodesEr k, where they become incident
currentsEk̄.Er k; t + ¿/. We have used the following notations. NodeEr k is the neighbor site,
which is linked to nodeEr by the bondk, along which the currentsEk.Er ; t/ and Sk.Er ; t/
propagate. Moreover, bondk for nodeEr is referred to as bond̄k for nodeEr k (Fig. 1). With
this convention, the propagation step along the bondk of nodeEr (or bondk̄ of nodeEr k) reads
Ek̄.Er k; t + ¿/= Sk.Er ; t/ andEk.Er ; t + ¿/= S̄k.Er k; t/. Note that since we consider a Bravais
lattice, the indexk can be associated to a particular lattice direction andk̄ to the opposite
direction. This would not be true for a random lattice, as considered, for instance, in [7].
An additional outgoing currentSz+1.Er ; t/ is attached to each node. This current (hereafter
referred to as the on-site current) can be considered as propagating along a loop attached to
the node. It becomes an incident currentEz+1.Er ; t + ¿/on the same node at the next time step.

Each nodeEr of the lattice is a scatterer described by a matrix that instantaneously trans-
forms thez+ 1 incident currentsEk.Er ; t/; k= 1; : : : ; z+ 1 in z+ 1 outgoing currents
Sk.Er ; t/. Hence, the scattering process is described by

Sk.Er ; t/ =
z+1∑
l=1

skl.Er /El .Er ; t/ k = 1; : : : ; z+ 1; (2.1)

where theskl.Er / are the elements of the.z+ 1/× .z+ 1/ scattering matrixS. The time
evolution of the currents is summarized in Fig. 2.

FIG. 2. Scattering and propagation of currents.
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The field at nodeEr and at timet is defined by a linear combination of the incident currents

9.Er ; t/ =
z+1∑
k=1

‚k.Er /Ek.Er ; t/; (2.2)

where the‚k.Er / are real coefficients to be determined by the properties discussed below.
The most general explicit form of the discrete wave equation, which governs the time

evolution of9.Er ; t/, can be written

9.Er ; t + ¿/ = f .9.Er ′; t ′/;9.Er ′′; t ′′/;9.Er ′′′; t ′′′/; : : :/; (2.3)

where the field at nodeEr and at timet + ¿ is computed from known values of the field at
specific nodesEr ′; Er ′′; : : : and at previous timest ′; t ′′, etc. By using (2.2), Eq. (2.3) becomes

z+1∑
k=1

‚k.Er /Ek.Er ; t + ¿/

= f

(
z+1∑
k=1

‚k.Er ′/Ek.Er ′; t ′/;
z+1∑
k=1

‚k.Er ′′/Ek.Er ′′; t ′′/;
z+1∑
k=1

‚k.Er ′′′/Ek.Er ′′′; t ′′′/; : : :
)
: (2.4)

It has been established in [7] that this evolution equation of the currents is possible if the
elements of the scattering matrixShave the structure

skl.Er / = ‰k.Er /‚l .Er /− „k.Er /–kl ; (2.5)

where the‚l .Er / are the coefficients introduced in the definition of the field (Eq. (2.2)).‰k.Er /
and„k.Er / are coefficients to be determined and–kl is the Kronecker symbol. Moreover,
„k.Er / must satisfy the condition

∀k = 1; : : : ; z+ 1 „k.Er /„k̄.Er k/ = „2; (2.6)

where the constant„2 is independent of the node positionEr . Equations (2.5) and (2.6) are
essential in the construction of the model and have been named closure conditions in [7].
Without them, it would be impossible to obtain for9.Er ; t/ a closed equation like (2.3),
where no current’s term appears.

The construction of the model goes further by introducing fundamental symmetries of
the evolution of the currents. The first symmetry is time reversal, which implies that the
scattering process is reversible when the directions of the current arrows are reversed. This
yields the conditionS−1= S for the scattering matrix. The next symmetry is reciprocity.
Each matrix elementskl of Sdescribes one elementary current process, which is transmis-
sion, reflection or scattering. It couples the two channels (bonds)k andl . Reciprocity means
that the scattering process fromk to l and the reciprocal process froml to k have the same
amplitude. In other words,∀k; l = 1; : : : ; z+ 1; slk = skl . Thus, the matrixSis symmetrical.
Note that the propertiesS−1= SandS= St imply thatS is orthogonal.

By using the current propagation and scattering rules, the closure equations (2.5), (2.6),
and the two previous symmetries, one obtains

9.Er ; t + ¿/+9.Er ; t − ¿/ =
z+1∑
k=1

‚k.Er /‰k̄.Er k/9.Er k; t/; (2.7)
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where

‰k.Er / = .1+ 1=„2/„k.Er /‚k.Er /=3.Er / (2.8)

3.Er / =
z+1∑
k=1

‚2
k.Er / (2.9)

∀Er ; ∀k = 1; : : : ; z+ 1 „2
k.Er / = „2 = 1: (2.10)

Equation (2.7) is an equation of the type (2.3). This is a closed equation for9.Er ; t/,
where no current appears explicitly. In the next section, Eq. (2.7) will be the starting point
for the construction of the wave equation in an anisotropic medium. However, we continue
with the isotropic case in order to point out the hypotheses that are not compatible with
anisotropy.

The remaining unknown parameters are the (z+ 1) coefficients‚k.Er /. To determine the
values of these parameters, isotropy of the scattering process has been assumed in [7]. This
additional symmetry means that at any node all bonds are equivalent (except the on-site
bond). In other words, the scattering matrix is invariant under a new labeling of the bonds.
One finds

∀k; l k; l 6= z+ 1 ‚k.Er / = ‚l .Er /: (2.11)

Eventually, by considering ad-dimensional Cartesian lattice (z= 2d) of lattice constant
a, the following discrete wave equation has been obtained in [7]

[9.Er ; t + ¿/+9.Er ; t − ¿/− 29.Er ; t/]=¿ 2 = ‚1.Er /c2
0

{
2d∑

k=1

[9.Er k; t/−9.Er ; t/]=a2

}
;

(2.12)

wherec0=a=¿ is the velocity of the currents,‚1.Er /= 2=.2d+ À2.Er //andÀ.Er /= ‚2d+1.Er /=
‚1.Er /. Equation (2.12) is the discretized version of the scalar wave equation

@29=@t2 = c2.Er /∇29 (2.13)

The velocity of the wave isc2.Er /= 2c2
0=.2d+ À2.Er //. Sincec2.Er / does not depend on the

direction of propagation, (2.12) describes an isotropic medium. In reality, there exists a
residual anisotropy, which is inherent to any discrete model of wave propagation, even in
the case of isotropic wave propagation. It is observed for example in the high frequency
range of the dispersion curves!.Ek/ that becomes strongly anisotropic when the wavelength
is of the order of the lattice constant. Here,! and Ek are the wave frequency and the wave
vector, respectively. This effect is well known and thoroughly discussed in several references
(see [16–18], for instance). However, we are not interested in that anisotropy, which vanishes
in the continuum limit. Therefore, if we want to describe effective anisotropic propagation,
some of our previous hypotheses must be modified.

The first guess is to abandon the hypothesis of isotropic scattering. In such a case, one
obtains a wave equation with anisotropic propagation. However, one finds that the principal
axes are bound to be the coordinate axes of the Cartesian grid. Hence, introducing anisotropic
scattering is not sufficient for describing an anisotropic medium whose principal axes are
oriented along arbitrary directions.
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To make further progress, it is important to notice that the results obtained up to Eq. (2.10)
are valid for any arbitrary lattice. In particular, they are not limited to the Cartesian lattice
that has been used to obtain Eq. (2.12). Any Bravais lattice in any dimension could have
been chosen. Therefore, we may wonder whether another lattice could solve the difficulty
encountered with a Cartesian grid. In the next section, we shall see that a hexagonal lattice
is a good choice for two-dimensional media.

3. THE WAVE EQUATION IN A TWO-DIMENSIONAL HOMOGENEOUS

ANISOTROPIC MEDIUM

We continue the construction of the wave equation starting from equations (2.7)–(2.10)
that resulted from the rules governing the current evolution, time reversal symmetry, and
reciprocity. In contrast with the previous section, we do not impose isotropic scattering,
nor do we impose a Cartesian grid. However, we shall eventually restrict ourselves to a
two-dimensional medium.

First, by choosing„k.Er /=„= 1 and introducing the field8.Er ; t/=9.Er ; t/=3.Er /,
Eq. (2.7) becomes

8.Er ; t + ¿/+8.Er ; t − ¿/ = [2=3.Er /]
z+1∑
k=1

‚k.Er /‚k̄.Er k/8.Er k; t/: (3.1)

Next, we transform (3.1) in order to write explicitly the second order time and spatial deri-
vatives of8.Er ; t/. By using the definition (2.9) of3.Er / and remembering that‚z+1.Er z+1/≡
‚z+1.Er /, one easily obtains

8.Er ; t + ¿/+8.Er ; t − ¿/− 28.Er ; t/

= [2=3.Er /]
{

z∑
k=1

‚2
k.Er /[8.Er k; t/−8.Er ; t/] +

z∑
k=1

‚k.Er /[‚k̄.Er k/− ‚k.Er /]8.Er k; t/

}

= [2=3.Er /]
{

z=2∑
k=1

(
‚2

k.Er /[8.Er k; t/−8.Er ; t/] + ‚2
k̄.Er /[8.Er k̄; t/−8.Er ; t/]

)
+

z∑
k=1

‚k.Er /[‚k̄.Er k/− ‚k.Er /]8.Er k; t/

}
: (3.2)

Note that in the last equation the first summation is made over thez=2 directions (k; k̄)
instead of thez bondsk. Assume that‚k̄.Er /= ‚k.Er /, which means that two opposite bonds
of a node are equivalent. This assumption corresponds to local inversion symmetry and is
less stringent than isotropic scattering, where all the‚k.Er / but‚z+1.Er / are identical. Then,
(3.2) becomes

8.Er ; t + ¿/+8.Er ; t − ¿/− 28.Er ; t/

= [2=3.Er /]
{

z=2∑
k=1

‚2
k.Er /[8.Er k; t/+8.Er k̄; t/− 28.Er ; t/]

+
z∑

k=1

‚k.Er /[‚k.Er k/− ‚k.Er /]8.Er k; t/

}
: (3.3)
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We recognize in [8.Er k; t/+8.Er k̄; t/− 28.Er ; t/] the discretized form of the second spatial
derivative along the direction.k; k̄/. Note also that‚k̄.Er k/ has been replaced by‚k.Er k/ in
the second sum. Hence, if the medium is homogeneous‚k.Er k/= ‚k.Er / and the last term of
(3.3) vanishes. The final equation reads

[8.Er ; t + ¿/+8.Er ; t − ¿/− 28.Er ; t/]=¿ 2 =
z=2∑
k=1

c2
k[8.Er k; t/+8.Er k̄; t/− 28.Er ; t/]=a2;

(3.4)

where the velocities

c2
k = 2c2

0‚
2
k=3 (3.5)

do not depend onEr in a homogeneous medium. As beforec0=a=¿ is the velocity of the
currents.

Until now, these results are valid for any lattice. Let us consider first a two-dimensional
Cartesian grid with coordinate axesx; y. The coordination number isz= 4 and (3.4) be-
comes

[8.Er ; t + ¿/+8.Er ; t − ¿/− 28.Er ; t/]=¿ 2

= c2
x[8.Er + – Ex; t/+8.Er − – Ex; t/− 28.Er ; t/]=a2

+ c2
y[8.Er + –Ey; t/+8.Er − –Ey; t/− 28.Er ; t/]=a2: (3.6)

Equation (3.6) describes an anisotropic medium. However, the principal axes are aligned
along the coordinate axesx; y.

Let us consider next a hexagonal lattice with coordinate axesu; v; w (Fig. 3). The coor-
dination number isz= 6, and (3.4) becomes

[8.Er ; t + ¿/+8.Er ; t − ¿/− 28.Er ; t/]=¿ 2

= c2
u[8.Er + – Eu; t/+8.Er − – Eu; t/− 28.Er ; t/]=a2+ c2

v[8.Er + –Ev; t/+8.Er − –Ev; t/
− 28.Er ; t/]=a2+ c2

w[8.Er + – Ew; t/+8.Er − – Ew; t/− 28.Er ; t/]=a2; (3.7)

wherecu≡ c1= c6; cv ≡ c2= c5, andcw ≡ c3= c4 according to the labeling of the bonds
shown in Fig. 3c. It turns out that Eq. (3.7) is appropriate to describe anisotropic propagation
with arbitrarily oriented principal axes.

FIG. 3. (a) Hexagonal lattice. (b) The coordinate axesu; v; w are chosen along the three directions of the
lattice. (c) Labeling of the bonds at each node of the lattice. With our previous notations, 6≡ 1̄; 5≡ 2̄, and 4≡ 3̄.
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FIG. 4. The direction of the principal axesX;Y is given byµ .

Let us consider a medium with principal axesX;Y making an angleµ with respect to
axesx; y (Fig. 4). The wave equation, which reads in theX;Y coordinate system

@2`=@t2 = c2
X@

2`=@X2+ c2
Y@

2`=@Y2 (3.8)

becomes, in thex; y coordinate system,

@28=@t2 = a@28=@x2+ b@28=@y2+ c@28=@x@y; (3.9)

with

a = [c2
X.1+ cos 2µ/+ c2

Y.1− cos 2µ/
]/

2

b = [c2
X.1− cos 2µ/+ c2

Y.1+ cos 2µ/
]/

2

c = (c2
X − c2

Y

)
sin 2µ:

This is precisely the mixed derivative@28=@x@y, which prevented Eq. (3.6) from describing
anisotropy with arbitrary orientation.

In contrast, it is straightforward to establish that (3.8) becomes in theu; v; w coordinate
system

@28=@t2 = fiu@
28=@u2+ fiv@28=@v2+ fiw@28=@w2; (3.10)

where

fik =
[(

c2
X + c2

Y

)− 2
(
c2

X − c2
Y

)
sin
(
µk + 2µ

)]/
3 k = u; v; w (3.11)

Here, µk is the angle of axisk with respect to axisx; i.e., µu=−…=6, µv = 7…=6, and
µw =…=2.

It is obvious that (3.10) is the continuum limit of (3.7). Therefore, by identifying thefik’s
in (3.10) with thec2

k ’s in (3.7) and using (3.5), one obtains

‚2
k =

(
3=6c2

0

)[(
c2

X + c2
Y

)− 2
(
c2

X − c2
Y

)
sin.µk + 2µ/

]
k = 1; 2; 3 (3.12)

Remembering that‚k̄= ‚k and the definition (2.9) of3.Er /, which becomes for a hexagonal
lattice

3 =
7∑

k=1

‚2
k = 2

(
‚2

1+ ‚2
2+ ‚2

3

)+ ‚2
7; (3.13)
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the three equations (3.12) are implicit equations for the‚k’s. To find explicit expressions
as functions of the physical parameterscX; cY, andµ , let us first notice that the‚k’s are
defined modulo a constant factor in the definition of the field (2.2). In particular, we can
express the‚k’s by their ratios‚2

k=‚
2
1, where the scaling factor has been arbitrarily chosen

equal to‚1. From (3.12) and (3.13), one finds

‚2
k = ‚2

1

[(
c2

X + c2
Y

)− 2
(
c2

X − c2
Y

)
sin.µk + 2µ/

]/[(
c2

X + c2
Y

)− 2
(
c2

X − c2
Y

)
sin.µ1+ 2µ/

]
k = 2; 3 (3.14)

‚2
7 = 6‚2

1

[
c2

0 −
(
c2

X + c2
Y

)]/[(
c2

X + c2
Y

)− 2
(
c2

X − c2
Y

)
sin.µ1+ 2µ/

]
(3.15)

3 = 6‚2
1c2

0

/[(
c2

X + c2
Y

)− 2
(
c2

X − c2
Y

)
sin.µ1+ 2µ/

]
: (3.16)

If the value of‚1 is chosen arbitrarily, the three above expressions are functions ofcX; cY,
andµ . However, it is possible to choose the value of‚1 in such a manner that‚7 does not
depend on the angleµ . To explain this choice, it is useful to understand the role played by
‚7. Let us consider the special case of isotropic propagation. ThencX = cY and all‚k’s but
‚7 are equal, say‚k= ‚1, ∀k= 2; : : : ;6. Using those conditions (3.12) leads to

c2
X = c2

Y = 3c2
0

/(
6+ ‚2

7

/
‚2

1

)
: (3.17)

This expression shows that the velocity of the wave is determined by‚7. In particular, the
maximum wave velocityc2

max is obtained for‚7= 0 and is given by

cmax= c0=
√

2:

This result is intuitive. The role played by the on-site current is to trap a fraction of the
wave at each node and at each time step. This trapping effect is controlled by the value of
‚7. The net result is to slow down the wave when‚7 increases.

In the anisotropic case,‚7 plays a similar role. It is natural to consider that‚7 must control
the values of the velocitiescX andcY independently of the orientationµ . This condition
will be fulfilled if µ does not appear in Eq. (3.15). Hence,cX; cY, andµ being given, we
make the choice

‚2
1 =

[(
c2

X + c2
Y

)− 2
(
c2

X − c2
Y

)
sin.µ1+ 2µ/

]/
3c2

0: (3.18)

Using (3.18), one finds

‚2
k =

[(
c2

X + c2
Y

)− 2
(
c2

X − c2
Y

)
sin.µk + 2µ/

]/
3c2

0 k = 1; 2; 3 (3.19)

‚2
7 = 2

[
1− (c2

X + c2
Y

)/
c2

0

]
(3.20)

3 = 2: (3.21)

We note that (3.20) is the extension to anisotropic media of (3.17), which is only valid
for isotropic media. At this stage, the construction of the model is completed. The values of
‚k being known and remembering the choice„k=„= 1, Eq. (2.8) leads to‰k= ‚k. Then,
we deduce the elementsskl of the scattering matrixS from (2.5).

Let us point out a limitation of the present model. Notice that Eq. (3.19) determines the
square value of‚k. Hence, the right-hand side must be positive whatever the orientationµ .
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This implies the restriction

1=3≤ c2
Y

/
c2

X ≤ 3; (3.22)

or in terms of the indicesnX = cmax=cX; nY = cmax=cY,

1=
√

3≤ nY=nX ≤
√

3:

To conclude the present section, we recall that we have considered a homogeneous
medium in our construction. We shall focus on the description of inhomogeneous media in
the next section.

4. TWO-DIMENSIONAL INHOMOGENEOUS ANISOTROPIC MEDIA

Let us consider the interface between two different homogeneous media (Fig. 5). Both
media are characterized by their valuescX; cY; µ andc′X; c

′
Y; µ

′. Inside each medium, wave
propagation is described by the general equation (3.4). Our task is to identify the steps of our
construction, which must be modified to take the interface into account. In Section 4.1, we
establish the new equation that governs the time evolution of the field at a node that belongs
to the interface. In this new equation, the values of parameters of the wave automaton
depend on the way the velocity gradients are described at the interface. This description
can be intricate except if simplifying assumptions are used as discussed in Section 4.2.

4.1. Wave Equation at the Interface

We must start from Eq. (3.2), which we rewrite below for a hexagonal lattice:

8.Er ; t + ¿/+8.Er ; t − ¿/− 28.Er ; t/

= [2=3.Er /]
{

3∑
k=1

(
‚2

k.Er /[8.Er k; t/−8.Er ; t/] + ‚2
k̄.Er /[8.Er k̄; t/−8.Er ; t/]

)
+

6∑
k=1

‚k.Er /[‚k̄.Er k/− ‚k.Er /]8.Er k; t/

}
: (4.1)

FIG. 5. The dotted lines represent the bonds of the hexagonal lattice, which connect the nodes of two different
media. A position vector is denotedEr in medium 1 andEr ′ in medium 2.
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Two assumptions have been necessary to obtain Eq. (3.4) for a homogeneous medium.
First, we have assumed local inversion symmetry

‚k̄.Er / = ‚k.Er / (4.2)

and next, homogeneity

‚k.Er k/ = ‚k.Er /: (4.3)

In particular, both assumptions were necessary to cancel the last term in (4.1). If at
the interface‚k.Er / and‚′̄k.Er ′k/ have the values given by Eqs. (3.19) for their respective
homogeneous medium they will not be identical in general. Here, we use the prime sign
(see Fig. 5) to indicate thatEr andEr ′k do not belong to the same medium. Hence, the last term
in (4.1) will be different from zero. We may wonder whether this could be the interface
term that is needed for the inhomogeneous case. It turns out that this guess is not correct.
To see this, consider the particular case whereµ = 0, c′X = cX, andc′Y 6= cY. The values of
‚k.Er / and‚′k.Er ′/ are given by (3.19)

‚2
k.Er / =

[(
c2

X + c2
Y

)− 2
(
c2

X − c2
Y

)
sin.µk/

]/
3c2

0 k = 1; 2; 3 (4.4)

‚′2k.Er ′/ =
[(

c2
X + c′2Y

)− 2
(
c2

X − c′2Y
)
sin.µk/

]/
3c2

0 k = 1; 2; 3: (4.5)

Consider a plane wave propagating along thex direction,8.Er ; t/=80 expi .!t − kx/,
where80 does not depend ony. According to the assumptionc′X = cX, this wave should
propagate with velocitycX in both media. It should not feel the interface and should prop-
agate as in a homogeneous medium. However, sincec′Y 6= cY, (4.4) and (4.5) imply that
‚′̄k.Er ′k/ 6= ‚k.Er / and the last term in (4.1) is different from zero at the interface. Hence, this
term will induce spurious instead of zero scattering.

To avoid this problem, we assume that the equality‚k̄.Er k/= ‚k.Er /, which results from
(4.2) and (4.3) in a homogeneous medium, is also true at the interface. Hence, the last term
in (4.1) always vanishes. However, since in general‚k.Er / and‚′k.Er ′k/ are different at the
interface, this assumption is not compatible with (4.2). Therefore, we shall not postulate local
inversion symmetry at the interface. From a physical point of view, this sounds reasonable
since inversion symmetry is certainly lost at any interface.

Let us introduce some notation. IfEr and Er ′k are two nodes connected by bondk at the
interface, we note‚I .Er ; Er ′k/ the common value of‚k.Er / and‚k̄.Er ′k/ according to the above
hypothesis

‚I .Er ; Er ′k/ = ‚k.Er / = ‚k̄.Er ′k/: (4.6)

Also, since‚k.Er / does not depend onEr inside each homogeneous medium, we note
‚k.Er /= ‚k in medium 1 and‚k.Er ′/= ‚′k in medium 2. For instance, with these notations
Eq. (4.1) inside medium 1 becomes

8.Er ; t + ¿/+8.Er ; t − ¿/− 28.Er ; t/ =
3∑

k=1

‚2
k[8.Er k; t/+8.Er k̄; t/− 28.Er ; t/]: (4.7)
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Here, the‚k’s are given by (3.19) and we have used (3.21). At a nodeEr of the interface,
Eq. (4.1) becomes

8.Er ; t + ¿/+8.Er ; t − ¿/− 28.Er ; t/

= [2=3.Er /]
{

6−n∑
k=1

‚2
k[8.Er k; t/−8.Er ; t/] +

n∑
k=1

‚2
I .Er ; Er ′k/[8.Er ′k; t/−8.Er ; t/]

}
; (4.8)

where we have separated then bonds, which connectEr to medium 2 from the other bonds.
Note that we should have writtenn.Er / instead ofn, since this number depends on the local
configuration of nodeEr . To simplify the notations, we shall keep writingn in the following.
The coefficient3.Er / reads

3.Er / =
6−n∑
k=1

‚2
k +

n∑
k=1

‚2
I .Er ; Er ′k/+ ‚2

7.Er /: (4.9)

Using‚2
k̄= ‚2

k in each homogeneous medium, we can rewrite (4.8) as

8.Er ; t + ¿/+8.Er ; t − ¿/− 28.Er ; t/

= [2=3.Er /]
{

3∑
k=1

‚2
k[8.Er k; t/+8.Er k̄; t/− 28.Er ; t/]

+
n∑

k=1

[
‚2

I .Er ; Er ′k/− ‚2
k

]
[8.Er ′k; t/−8.Er ; t/]

}
: (4.10)

We could also write equivalent equations at the nodesEr ′ of medium 2 that belong to the
interface. In particular, (4.9) becomes

3′.Er ′/ =
6−n′∑
k=1

‚′2k +
n′∑

k=1

‚2
I .Er k; Er ′/+ ‚′27.Er ′/; (4.11)

wheren′ is the number of bonds which connectEr ′ to medium 1.
Finally, we note that3= 2 in medium 1 and in medium 2 as in any homogeneous medium.

There is no special reason for3 to have a different value at the interface. Therefore, we
assume

3.Er / = 3′.Er ′/ = 2; (4.12)

a choice to be validated below.
Using (4.12), (4.10) becomes

8.Er ; t + ¿/+8.Er ; t − ¿/− 28.Er ; t/]=¿ 2

= c2
0

{
3∑

k=1

‚2
k[8.Er k; t/+8.Er k̄; t/− 28.Er ; t/]

+
n∑

k=1

[
‚2

I .Er ; Er ′k/− ‚2
k

]
[8.Er ′k; t/−8.Er ; t/]

}/
a2: (4.13)
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The first sum in (4.13) is the Laplacian in medium 1. Hence, the last term must be inter-
preted as a source term due to the interface. To check this, let us consider again the special
case of an isotropic medium, i.e.,∀k= 1; : : : ;6; ‚2

k= ‚2
1. The last sum in (4.13) becomes

n∑
k=1

[
‚2

I .Er ; Er ′k/− ‚2
k

]
[8.Er ′k; t/−8.Er ; t/] =

n∑
k=1

[
‚2

I .Er ; Er ′k/− ‚2
1

]
[8.Er ′k; t/−8.Er ; t/]

=
n∑

k=1

[
‚2

I .Er ; Er ′k/− ‚2
1

]
[8.Er ′k; t/−8.Er ; t/] +

6−n∑
j=1

[
‚2

j − ‚2
1

]
[8.Er j ; t/−8.Er ; t/]:

(4.14)

In the second equality, the last term, which equals zero, has been added on purpose to
obtain a summation over all neighbors of nodeEr . As ‚2

I .Er ; Er ′k/ is unknown, let us assume

‚2
I .Er ; Er ′k/ = fi‚2

1+ [1− fi]‚′2k: (4.15)

Then, (4.14) reads

n∑
k=1

[
‚2

I .Er ; Er ′k/− ‚2
k

]
[8.Er ′k; t/−8.Er ; t/]

= .1− fi/
{

n∑
k=1

[
‚′2k− ‚2

1

]
[8.Er ′k; t/−8.Er ; t/]+

6−n∑
j=1

[
‚2

j − ‚2
1

]
[8.Er j ; t/−8.Er ; t/]

}
:

(4.16)

For a hexagonal lattice, the sum over all neighbors is the discrete form of the quantity
3E∇‚2.Er / · E∇8.Er ; t/. Using (3.19) for an isotropic medium, the wave velocity isc2= c2

X=
c2

Y = .3=2/c2
0‚

2
1. Hence, the last term in (4.13) is the second order discrete approxima-

tion of the product 2.1−fi/ E∇c2.Er / · E∇8.Er ; t/. If we choosefi= 0:5, we obtain exactly
E∇c2.Er / · E∇8.Er ; t/. This last product is known to appear, for instance, in the sound wave
equation in the presence of a sound velocity gradient. This indicates that our hypotheses (4.6)
and (4.12) have a sound basis. Note that using (4.15), we would have obtained the product
2fi E∇c2.Er ′/ · E∇8.Er ′; t/ for a nodeEr ′ of medium 2. This is also equal toE∇c2.Er ′/ · E∇8.Er ′; t/
whenfi= 0:5. Actually, we shall see later that the value offi is not essential.

If the velocity is anisotropic, the last sum in (4.13) can be considered as the discrete
equivalent for an anisotropic medium of the productE∇c2.Er / · E∇8.Er ; t/. It is obvious that
such a term will not induce spurious scattering as in the example we considered at the
beginning of this section.

4.2. Determination of the Interface Parameters

In (4.9)–(4.11), the parameters‚I .Er ; Er ′k/; ‚I .Er k; Er ′/,‚7.Er / and‚′7.Er ′/ are unknown. Using
(3.13) in both homogeneous media and (4.12), Eqs. (4.9) and (4.11) become

‚2
7.Er /− ‚2

7+
n∑

k=1

(
‚2

I .Er ; Er ′k/− ‚2
k

) = 0 (4.17)

‚′27.Er ′/− ‚′27+
n′∑

k=1

(
‚2

I .Er k; Er ′/− ‚′2k
) = 0: (4.18)
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If Nn andNb are respectively the numbers of nodes and bonds that belong to the interface,
(4.17) and (4.18) form a system ofNn equations, one for each nodeEr and Er ′. There are
first Nn unknown parameters,‚2

7.Er / and‚′27.Er ′/. Next, remember that‚2
I .Er ; Er ′k/= ‚2

I .Er j ; Er ′/
when .Er ; Er ′k/ and .Er j ; Er ′/ correspond to the same bond. Hence, the number of unknown
parameters‚2

I .Er ; Er ′k/ or ‚2
I .Er j ; Er ′/ is Nb. Eventually, (4.17) and (4.18) form a linear system

of Nn equations with.Nn+ Nb/ unknown parameters. AsNb≈ Nn, these parameters are
largely undetermined.

To solve this system, additional constraints are needed. First, nothing prevents us from
writing

‚2
I .Er ; Er ′k/ = fik.Er ; Er ′k/‚2

k + [1− fik.Er ; Er ′k/]‚′2k; (4.19)

which is more general than (4.15). Thefik.Er ; Er ′k/ are to be determined. The only hypothesis
made in writing (4.19) is that‚2

I .Er ; Er ′k/= ‚2
k if ‚2

k= ‚′2k. An equation similar to (4.19) can
be written for‚2

I .Er k; Er ′/. Hence, (4.17) and (4.18) become

‚2
7.Er / = ‚2

7+
n∑

k=1

[1− fik.Er ; Er ′k/]Dk (4.20)

‚′27.Er ′/ = ‚′27−
n′∑

k=1

fik.Er k; Er ′/Dk; (4.21)

where theDk are known quantities defined as

Dk = ‚2
k − ‚′2k: (4.22)

We are free to choose the values offik.Er ; Er ′k/ for each bond.Er ; Er ′k/. This choice being
made, (4.20) and (4.21) provide the values of‚2

7.Er / and‚′27.Er ′/ at each nodeEr andEr ′ of the
interface. To choose thefik.Er ; Er ′k/, one just has to make sure that the conditions

0≤ ‚2
7.Er /; ‚′27.Er ′/ ≤ 2 (4.23)

are verified. This is a consequence of3.Er /=3′.Er ′/= 2.
However, proceeding that way is not necessary. It means that we are describing in detail

the velocity gradient at each bond of the interface. This is generally useless. As a reasonable
choice, we can decide thatfik.Er ; Er ′k/=fik. Here the valuefik depends on the direction.k; k̄/
of the hexagonal lattice but does not depend on the particular bond.Er ; Er ′k/. Hence, instead of
Nn equations, the system (4.20), (4.21) reduces toNc equations, whereNc is the number of
local configurations involvingn or n′ connecting bonds. Apart from the case where media
1 or 2 correspond to localized defects including a few nodes,Nc is usually much smaller
thanNn.

One further approximation is to give tofik a unique valuefik=fi at any bond of the
interface, as we did in the isotropic case. Equations (4.20) and (4.21) become

‚2
7.Er / = ‚2

7+ [1− fi]
n∑

k=1

Dk (4.24)



WAVE AUTOMATON FOR ANISOTROPIC MEDIA 555

‚′27.Er ′/ = ‚′27− fi
n′∑

k=1

Dk: (4.25)

For instance, if we choosefi= 1, we obtain

‚2
7.Er / = ‚2

7 (4.26)

‚′27.Er ′/ = ‚′27−
n′∑

k=1

Dk: (4.27)

This choice means that the velocity gradients are localized at the nodesEr ′ of the interface,
i.e., at the boundary of medium 2. For the opposite choice,fi= 0, the velocity gradients
would be concentrated at the medium 1 side. One could also select any intermediate choice
0<fi<1. It is obvious that the chosen value is not important if the thickness of the interface,
which is one lattice bond, is much smaller than other characteristic lengths of the system
under investigation. Note also that its is possible to describe thicker interfaces by building
velocity gradients over several bonds using the same general arguments. Eventually, let us
point out again that the choice offi in (4.24) and (4.25) is limited by the condition (4.23).
In Section 5, (4.24) and (4.25) have been used to describe the boundaries of scatterers
immersed in a homogeneous medium.

4.3. Summary of the Method

Before providing numerical examples to demonstrate the capability of the wave automa-
tion, it is useful to give a short summary of the method. We consider a system made of
several anisotropic media labeled by superscriptsM = A; B;C. Each mediumM is char-
acterized by its principal axesXM , YM making an angleµM with respect to axesx; y
of a two-dimensional Cartesian grid. The wave velocities alongXM andYM arecM

X and
cM

Y , respectively. The special case of an isotropic medium is automatically included when
cM

Y = cM
X .

After the implementation of the geometrical configuration over a triangular lattice, the
subsequent step is to associate a scattering matrix to each node of the grid. We proceed
in two steps. First, each mediumM is considered separately from the others. Next, nodes
located at the boundaries between two different mediaM andN are considered.

Let us consider first any mediumM . The only parameters to be calculated are the coef-
ficients‚M

k ; k= 1; : : : ;7 as a function ofµM ; cM
X , andcM

Y according to (3.19) and (3.20).
We recall thatµk, k= 1; 2; 3 in (3.19) is the angle of axisk of the triangular grid with
respect to axisx. In fact, as inside each homogeneous medium local inversion is obeyed,
i.e., ‚M

k̄ ≡ ‚M
k , only four distinct values of‚M

k are needed. The coefficients‚M
k first enter

the definition of the field9.Er ; t/=∑7
k=1 ‚

M
k .Er /Ek.Er ; t/ (Eq. (2.2)) and completely de-

termine the scattering elementssM
kl .Er /= ‰M

k .Er /‚M
l .Er /−„M

k .Er /–kl of the scattering matrix
at nodeEr (Eq. (2.5)) since‰M

k .Er /= ‚M
k .Er / and„M

k .Er /= 1. At this stage, the coefficients
‚M

k are associated to each node of mediumM , including the nodes of its boundaries.
Hence, as all nodes are identical insideM , it is sufficient to store four values‚M

k for each
mediumM .

Next, let us consider the interface between two mediaM andN. The values of‚M
k and

‚N
k̄ ≡ ‚N

k that have been previously computed must be modified according to Eq. (4.19) for
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each bond (k; k̄) linking two nodesEr M andEr N belonging toM andN, respectively. Hence,
using the approximation described in Section 4.2, the common value of‚k.Er M

/ and‚k̄.Er N
/

is given by

[‚I .Er M
; Er N

/]2 = fi[‚M
k

]2+ [1− fi]
[
‚N

k

]2
;

where 0≤fi≤ 1. In many cases, choosingfi= 0:5 will be sufficient.
Given this new value of‚k.Er M

/ and‚k̄.Er N
/, the coefficients‚7.Er M

/ and‚7.Er N
/must be

modified according to (4.24) and (4.25)

[
‚7.Er M

/
]2 = [‚M

7

]2+ [1− fi]
nM∑
k=1

{[
‚M

k

]2− [‚N
k

]2}
[
‚7.Er N

/
]2 = [‚N

7

]2− fi nN∑
k=1

{[
‚M

k

]2− [‚N
k

]2}
;

wherenM (resp.nN) are the number of bonds, which connect nodeEr M (resp.Er N) to medium
N (resp.M).

Finally, it is important to point out that it is not necessary to compute the scattering
elements sM

kl .Er /, which describe the scattering process according toSk.Er ; t/=∑7
l=1sM

kl .Er /El .Er ; t/ k= 1; : : : ;7 (Eq. (2.1)). Actually, due to Eq. (2.5), it is easy to show
that the scattering process reads

Sk.Er ; t/ = ‚M
k .Er /ˆ.Er ; t/− Ek.Er ; t/; k = 1; : : : ;7: (4.28)

Hence, given seven currentsEk.Er ; t/ incident at nodeEr and at timet , one first computes
9.Er ; t/= ∑7

k=1 ‚
M
k .Er /Ek.Er ; t/ according to (2.2) and thenSk.Er ; t/ according to (4.28).

5. NUMERICAL EXAMPLES

To demonstrate the capability of the anisotropic wave automaton, we consider a circular
particle (medium 1) immersed in a homogeneous isotropic medium (medium 2). The system
is excited by a plane wave and the scattering pattern is recorded at the opposite side. First,
the particle is chosen isotropic in order to compare the wave automaton results to known far-
field patterns obtained using Mie theory. In the second example, the scattering properties of
an anisotropic particle have been computed using the wave automaton. Finally, the scattered
field of a collection of anisotropic particles is also presented.

5.1. Isotropic Scatterers

Medium 2 is characterized by its refractive indexn′ = cmax=c′, wherecmax= c0=
√

2. In the
same way, the scatter is characterized by its refractive indexn= cmax=c wherec= cX = cY.
In the following example,n′ = 1:527 andn= 1:636. Figure 6 displays the spatial map of the
field amplitude at a fixed time when the field is stationary. Presenting the field amplitude
instead of the intensity is convenient to display the small amplitude wavelets scattered
far away from the particle. In this example,k2R= 29:85, wherek2 is the wave number
in medium 2 andR is the radius of the scatterer. The physical values areR= 2 „m for
‚= 0:64 „m in vacuum in the case of light propagation. The corresponding numerical
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FIG. 6. Map of the field amplitude scattered by an isotropic disc. The system is excited by a plane wave
propagating from the left to the right hand side. To compute the far-field intensity, the near field has been recorded
along the vertical line drawn behind the scatterer.

values used in our simulations areR= 44a and‚2= 9:3a, where‚2 is the wavelength in
medium 2 anda is the unit step of the hexagonal grid.

The near-field pattern obtained in this example has been recorded along the vertical
line indicated in Fig. 6. Then, standard diffraction theory has been used to compute the
far-field intensity along a circle having a large radius compared to the wavelength and the
size of the particle. The result is compared in Fig. 7 with the analytical values provided
by the Mie scattering theory in a two-dimensional geometry [19]. If we superimpose the
two curves in Fig. 7, they cannot be distinguished from each other. To obtain a better
comparison, the curves of Fig. 7 have been displayed in Fig. 8 using a logarithmic scale.
Far-field intensities for particles with other radiiR are also presented. For each radiusR,
the two curves computed with the wave automaton and with the Mie analytical results are
superimposed. The agreement is excellent at the center of the curves but deteriorates at
large angles. This effect is expected because of the finite size of the numerical box that
contains the particle. For large observation angles, the computation of the far-field am-
plitude needs values of the near field close to the lateral boundaries of the system. Since
presently a perfectly matched layer absorbing scheme is not available for the wave automa-
ton, simple absorbing layers have been used to reduce wave reflection by the boundaries.
Thus, near field values close to the boundaries are strongly disturbed. This results in the
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FIG. 7. (a) Far-field intensity computed from the near field displayed in Fig. 6. (b) Far-field intensity computed
from the Mie scattering theory (R= 2„m, ‚= 0:64„m).

large drops of the wave automaton intensities near−90◦ and+90◦, which are clearly dis-
tinct from the Mie curves. However, the agreement, which is observed at the center of the
curves for all particle radii, demonstrates that good accuracy can be obtained with the wave
automaton.

5.2. Anisotropic Scatterers

Medium 2 is the same as in Section 5.1. We have also used the same valuek2R= 29:85.
The scatterer is now characterized by two different indicesnX = 1:527 andnY = 1:744.
Such values are encountered for instance in liquid crystals.

FIG. 8. Far-field intensities of scatterers with different radiusR.„m) at‚= 0:64„m. For each radiusR, the
curves computed with the wave automaton and with the Mie analytical results have been superposed. The large
drops observed near−90◦ and+90◦ belong to the wave automaton curves as explained in the text. For clarity of
the figure, the different pairs of curves have been vertically shifted.
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FIG. 9. Map of the field amplitude scattered by an anisotropic disc (µ = 0). The direction of propagation
corresponding to the largest indexny= nY = 1:744 is indicated by a vertical line drawn inside the scatterer.

Three orientationsµ of the principal axesX andY have been chosen,µ = 0; µ =…=4,
andµ =…=2. Note that the indicesnX in medium 1 andn′ in medium 2 have been chosen
identical on purpose. Whenµ = 0; nx = nX = 1:527 andny= nY = 1:744. As previously,
the indicesx; y designate the absolute coordinate axes andX;Y the principal axes of the
scatterer. Hence, with an incident plane wave along thex axis, the wave propagates without
scattering (Fig. 9). In contrast, scattering is observed whenµ =…=2 (Fig. 10). In this case
nx = nY = 1:744 andny= nX = 1:527 inside the scatterer. We stress that both scatterers in
Figs. 9 and 10 have the same indices. The only difference is the orientation of the principal
axes. The asymmetry due to anisotropic scattering is clearly seen in the third example, where
µ =…=4 (Fig. 11). The corresponding far-field patterns are presented in Figs. 12 and 13.
Unfortunately, in contrast with isotropic scatterers, we are not aware of analytical or exper-
imental far-field patterns for 2D anisotropic scattering.

Finally, it is interesting to give a last example with several anisotropic scatterers charac-
terized by the same indicesnX = 1:527 andnY = 1:744 (Fig. 14). In this example, the orien-
tations of the principal axes are randomly chosen among the three valuesµ = 0; µ =…=4 and
µ =…=2. The field scattered by each particle as a function ofµ is clearly illustrated. Such a
situation is encountered for instance in polymer dispersed liquid crystals. Such materials are
made of liquid crystal droplets randomly dispersed in a polymer matrix. Because the liquid
crystal is in the nematic phase, each droplet behaves as a uniaxial medium. Such materials
are known for their strong scattering properties when the droplets are randomly oriented.



FIG. 10. Map of the field amplitude scattered by an anisotropic disc (µ =…=2). The direction of propagation
corresponding to the largest indexnx = nY = 1:744 is indicated by a horizontal line drawn inside the scatterer.

FIG. 11. Map of the field amplitude scattered by an anisotropic disc (µ =…=4). Inside the scatterer, the
direction of propagation corresponding to the largest indexnY = 1:744 is indicated by the oblique line.
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FIG. 12. Far-field intensity computed from the near fields corresponding toµ =…=2 (Fig. 10): (a) linear
vertical scale; (b) logarithmic vertical scale.

FIG. 13. Far-field intensity computed from the near fields corresponding toµ =…=4 (Fig. 11): (a) linear
vertical scale; (b) logarithmic vertical scale.
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FIG. 14. Map of the field amplitude scattered by a collection of anisotropic particles. The system is excited by
a plane wave propagating from the left- to the right-hand side. The direction of propagation corresponding to the
largest index is indicated by a vertical line drawn inside each scatterer. In this example,nX = 1:527,nY = 1:744,
R= 1„m, ‚= 0:64„m.

6. CONCLUSION

In this paper, we have developed an extension of the wave automaton model [7] that
has been recently introduced to describe scalar wave propagation in the time domain. It
has been shown that using a hexagonal grid instead of the commonly used Cartesian grid
naturally leads to the modeling of wave propagation in anisotropic media. The results of
this model have been compared with known results using Mie theory. The introduction of
a hexagonal grid is one of the original features of our model. A major consequence is to
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avoid the interpolating schemes that are necessary with a Cartesian grid. We stress that this
result is not limited to the wave automaton and is also valid for traditional finite-difference
schemes. It is also worth noting that the scheme is unconditionally stable since the time
evolution of the currents relies on a network of orthogonal matrices. Another original aspect
of this work is to demonstrate that the complex case of anisotropic materials with arbitrary
orientations can also be modeled by an approach based on a discrete Huygens’ principle.
Currently, our model is limited to 2D media. The next step is to extend these results to
Maxwell and elastodynamics equations in 3D media.
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